Analysis & Simulation

What is Dynamic Analysis?

Dynamic stress can be obtained from the experiment (sensor or assembly sensor on a physical component) or simulation. Using simulation, a representative load history should be created that includes inertia forces and external forces (e.g. common reaction forces and torques) before calculating the correct dynamic stress. Multi-body dynamic analysis methods (discussed in Chapter 3), typically used for dynamic motion analysis, can be used for dynamic load analysis of mechanical systems. All bodies of the dynamic model are generally assumed to be rigid. The rigid body assumption for the suspension components of a vehicle often yields reasonably accurate analysis results to support structural design for durability.

Analysis & Simulation

What is Finite Element Analysis?

Finite element analysis (FEA) is a method of analysis that measures and concludes how a product or a system reacts to physical conditions such as force, impact, vibration, shock wave, heat resistance, fluid flow under current living conditions. Finite element analysis shows whether the product is working as broken, worn out or designed. This method is one of the key processes in the product development process. FEA works by dividing a real object into several (hundreds of thousands) finite elements such as small cubes and prisms. This method examines the state of each mesh structure through mathematical equations under physical conditions. A top mathematical equation examines all of these mesh structures holistically. Finite element analysis helps predict the behavior of products affected by many physical influences, including:
  • Mechanical Stress
  • Mechanical Vibration
  • Fatigue
  • Movement
  • Heat Transfer
  • Liquid Flow
  • Electrostatic
  • Plastic Injection Molding

We offer customized solutions to help your business grow and achieve its goals.

We not only care about your business but also your dreams. That’s why we do our best to work together and turn your ideas into reality.

Advantages of Analysis & Simulation

  •  It is basically a digital test method. The parts can be examined in a virtual computer environment before physically producing.
  •  Since the possible problems are displayed in the computer environment, the arrangements are revised in design and important steps are taken to make the design smooth.
  • Structural behavior and fault visualization are performed under various loading conditions.
  •  Insight information (Weight, Power, Cost) for critical design parameters is acquired
  • Faster and cheaper design cycle
  • Weight reduction, topology optimization, metal substitution material changes can be done with finite element method with faster, effective and economical methods
Scroll to Top